翻訳と辞書 |
Quadratic Lie algebra : ウィキペディア英語版 | Quadratic Lie algebra
A quadratic Lie algebra is a Lie algebra together with a compatible symmetric bilinear form. Compatibility means that it is invariant under the adjoint representation. Examples of such are semisimple Lie algebras, such as su(n) and sl(n,R). == Definition == A quadratic Lie algebra is a Lie algebra (g,()) together with an inner product that is invariant under the adjoint action, i.e. :((),''Z'')+(''Y'',())=0 where ''X,Y,Z'' are elements of the Lie algebra g. A localization/ generalization is the concept of Courant algebroid where the vector space g is replaced by (sections of) a vector bundle.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Quadratic Lie algebra」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|